
International Journal of Knowledge www.ijklp.org

and Language Processing KLP International ⓒ2011 ISSN 2191-2734

Volume 2, Number 4, October 2011 pp. 28-38

Incremental SVM Learning with Agent-based Framework on Data Stream

Zhongwei Li
1
Nankai University

No.94, Weijin Road, Nankai District, Tianjin, China

lizhongwei@nankai.edu.cn

Received September 2011; revised October 2011

ABSTRACT. Support Vector Machine (SVM) is a statistical method with excellent

classification performance based on small-sample statistics. It has become a popular

research topic among specialists in recent years that how to apply SVM‟s excellent

learning ability to large-scale database, especially to data stream. This paper makes an

introduction for the basic principles of SVM and an analysis of the QP problem. And

analysis is made for application of SVM learning method structure in the large datasets

with crossed feedback to improve the performance of the typical structure of incremental

SVM method. Finally, combined with Multi-agent system framework, a framework that

supports incremental SVM learning method and extendable Multi-agent system on data

stream is proposed in this paper. According to the related experiment and analysis of the

results, this frame is proved efficient.

Keywords: SVM, Incremental learning, Multi-agent framework, Data stream

1. Introduction. Support Vector Machine (SVM) is a powerful classification and

regression tool and has been applied to various pattern classification problems successfully

in recent years, but its computation and storage requirements increase rapidly with the

number of training vectors. The reason is that the core problem of an SVM is a quadratic

programming problem (QP), separating support vectors from the rest of the training data [1].

General-purposed QP solvers tend to scale with the cube of the number of training vectors.

Therefore, how to efficiently train support vector machines on problems with a large

training dataset is still an ongoing research issue.

One approach for accelerating the QP is based on ‗chunking‘ technology where subsets

of the training data are optimized iteratively [2], until the global optimum is reached.

Eliminating non-support vectors early during the optimization process is another strategy

that provides substantial savings in computation. Parallel training methods have been

proposed and proved that they are more suitable and efficient for SVM by splitting the

problem into smaller subsets and training a network to assign samples of different subsets,

and multiple SVM classifiers are trained in parallel way or in distributed computer system
[3]

. A. Tveit et al proposed the cascade SVM structure and proved efficient
[4]

, and other

29

researchers improved this structure to obtain more satisfying results [5, 6]. But to improve

that training speed through parallelization has obvious difficulty due to dependencies

between the computation steps and the distribution status of training data in every subset.

The basic principle of SVM is to find an optimal separating hyperplane so as to separate

two classed of patterns with maximal margin. It tries to find the optimal hyperplane making

expected errors minimized to the unknown test data, while the location of the separating

hyperplane is specified via only data that lie close to the decision boundary between the

two classes, which are support vectors [1]. Obviously, the design of SVM allows the

number of support vectors to be small compared to the total number of training data,

therefore, SVM seem well suited to be trained according to incremental learning.

Multi-agent technology, which has been rigorously researched since early 1990s, is being

regarded as one of the promising technologies for enterprise complex software systems [7].

The features of Multi-agent technology such as autonomy, distributed collaboration, and

intelligence naturally fit with the characteristics of large-scale database. Multi-agent system,

means that agents can work together or act autonomously in their environment to complete

a set of goals. Now, more and more researches upon it are carrying on. Ref. [7] applied the

Multi-agent for energy supply and demand prediction. Ref.[8] proposed a framework for

remote diagnostics with Multi-agent. More researches are carried out in fields of e-learning,

intelligent tutoring system, supply chain system, etc.

For the characteristic of Multi-agent system, the idea that constructs the distributed

mining framework with Multi-agent system for incremental SVM learning on large-scale

database is proposed in this paper. In this framework, every agent carries the local training

data and the distribution status. When an agent gets a local result by the local SVM training

algorithm, it will compare its distribution with the ones of the other agents. If the difference

is not clear, the local result could be discarded, else the data of every part should be

changed according to their distribution status.

This paper is organized as follows. In section 2, brief introduction is made for the SVM

and the QP problem. In section 3, this paper introduced the typical structuring method for

incremental SVM learning and its improvement method, with the analysis of the key parts

in the improved method. In section 4, combined with Multi-agent system framework, a

framework based on incremental SVM training structure is proposed. In the end, the

conclusions are outlined.

2. SVM and QP Problem. Classification is achieved by realizing a linear or non-linear

separation surface in the input space by SVM [1]. The aim of SVM is to find optimal

hyperplane between two classes with the symbols }1,1{ y , and iy is label of the ith

training sample, n

i Rx . For a classification problem, given l samples data points

)},(,),,(),,{(2211 ll yxyxyx , SVM training involves solving a quadratic programming

problem and the optimal solution gives rise to a decision function of the following form:

])(sgn[)(
1

l

i

iii bxxayxf (1)

30

Often, only small fractions of ia coefficient (Lagrange multipliers) are non-zero,

corresponding samples are called support vectors. Training a SVM on the support vectors

alone gives the same result as training on the whole example set, therefore, remaining

samples may be regarded as redundant and negligible because they do not contribute to the

decision function.

When training samples are non-separable, one can transform the set of input samples into

a higher dimensional feature space using a map ii zx)(, and then execute a linear

separation. This leads to:

]),(sgn[]))()((sgn[)(
11

l

i

iii

l

i

iii bxxKaybxxayxf (2)

))()((),(ii xxxxK is called the kernel function.

The kernel function allows us to construct an optimal separating hyperplane in a new

feature space without explicitly performing calculations. Unfortunately, the training of

Support Vector Machine itself and kernel function can be very time and memory

consuming, for large amounts of data and kernel matrix will be stored and computed. The

reason is training a SVM consists in finding a that minimizes the objective function:

1 1 1

1
() (,)

2

n n n

i i j i j i j

i i j

Q a a a a y y K x x

 (3)

Subject to the constraints:

1

0
n

i i

i

a y

 0 ia C (4)

That is to say, a quadratic optimization problem need be solved, where the number

of parameters is n . This makes the use of SVM for large dataset difficult: computing

(,)i jK x x for every training data pair would require 2()O n computation, and

solving may take up to 3()O n . However, current state-of-the-art algorithms appear

to have training time complexity scaling much closer to 2()O n than 3()O n [2].

3. Incremental Learning on Large-scale Database. The development of modern

computing and information technologies has enabled that huge amount of information has

been produced as digital data format. It is impossible to classify this information with hand

one by one in many realistic problems and fields, there is a need to scale up inductive

learning algorithms to handle more training data. A problem of SVM is the training datasets

are common far too large or always change in practice and new samples data are added in

at any moment, and incremental learning for SVM should be developed to avoid running

time-consuming training process frequently. Many researches have been made on

incremental learning with SVM [9, 10].

As the location of the optimal hyperplane is only related with linear combination of

support vectors, most incremental learning algorithms sets focus on collecting more useful

training data as support vectors with batch training model. Given that only a small fraction

of training data end up as support vectors, the SVM is able to summarize the data space in a

31

very concise manner. It is a feasible method that we can partition the training dataset in

batches that fit into memory, for each new batch, a SVM is trained on this batch and the

support vectors from the previous training step
[9]

, as the Figure 1 shown.

FIGURE 1. Batch incremental SVM learning model.

Using this method, the learning results are ―incremental‖ combined and deposited. The

batch learning methods utilize the property of SVM that only a small fraction of training

data end up as support vectors, the SVM is able to summarize the data space in a very

concise manner, and assume that the batches of data will be appropriate samples of the data.

Clearly, the problem is the learning results are subject to numbers of batches and state of

data distribution but always the distribution of data is unknown. That is to say, the problem

is the learning results are subject to numbers of batches and state of data distribution.

According to important properties of support vectors, we can expect to get an incremental

result that is equal to the non-incremental result, if the last training set contains all samples

that are support vectors in the non-incremental case. But disadvantage of this learning

model is the time consuming is not prompted, since all data in any subset, should be

computed to tell whether it is a support vector or not.

Clearly, it is confirmed that only the storage need can be decomposed in batch training

way. To speed up the incremental training process, some parallel training algorithms with

multiple SVM classifiers are developed and proved that they are more suitable to learn on

large-scale dataset than a single SVM classifier [11-13]. Therefore, taking advantage of

multiple SVM classifiers in batch training model is an improvement to incremental learning

techniques with SVM, and could expect to obtain more satisfying training results to deal

with large-scale classification problems.

In true incremental learning, the training dataset is not fully available at the beginning of

the learning process as in batch learning, data can arrive at any time, so incremental

learning algorithms differs from batch ones greatly. It is proved that the location of the

optimal hyperplane is only related with linear combination of support vectors. This implies

that the key to construct optimal hyperplane is collection more useful data point as support

vectors during the incremental learning. Most incremental learning algorithm are based on

improving SVM training process by collecting more useful data as support vectors [10, 14].

On the other hand, eliminating non-support vectors early from the optimization is an

effective strategy for speeding up training SVM [15]. From this concept, the cascade

structure is developed by initializing the problem with a number of independent smaller

optimizations and the partial results are combined in later stages in a hierarchical way, as

32

shown in figure 2, supposing the training data subsets
1TD , 2TD ,

3TD and 4TD are

independent among each other[16].

FIGURE 2. Cascade SVM structure.

In the structure shown in figure 2, splitting the training data and combining the results can

be done by many different ways. Sets of support vectors from two SVM classifiers are

combined and the optimization proceeds by finding the support vectors in each of the

combined subsets, and this continues until only one set of vectors is left. The advantage is

that every SVM did not have to deal with the whole training dataset, and these multiple

SVM classifiers can be trained in distribute computer network, so the training process is

speeded up greatly. Often, this cascade structure produces satisfactory accuracy with a

single pass through, but if the global optimum has to be reached, the result of the last layer

should be fed back into the first layer. Therefore, we should consider when a feedback is

needed and how to collect support vectors efficiently.

In the structure shown in figure 2, 7 SVM classifiers are constructed in total. To speed up

the whole training process, B. L. Lu et al proposed parallel training methods based on

cascade structure, ignoring the feedbacks which are necessary and combined the 5SV and

the 6SV into 7SV , even combined 1SV , 2SV , 3SV and 4SV directly in revised

algorithms[17].

In fact, considering the distribution of training dataset and the need of global optimization,

feedback should be kept to adjust classifiers. Therefore, we improved the cascade structure

in the following aspects:

1. If needed, take 5SV and 6SV as the feedback input directly.

2. The feedback is not added into each subset in the first layer directly but in a crossed way,

that is, 5SV is added into 3TD and 4TD , while 6SV into 1TD and 2TD .

3. Use the standard SVM algorithm, but collect more potential data samples as the support

vectors.

The key to construct a SVM is to obtain support vectors, and the standard SVM

algorithm obtains them by computing and judging whether 0ia or not. Domeniconi. et

33

al [11] compared four methods to collect samples as support vectors in incremental learning

and proposed algorithm applied to large-scale stream data. However, the fixed partition and

the exceeding margin techniques are limited to some extent, because the size of partition

lies on the dimension and type of training datasets, and the data samples near the margin

defined by SVM are also sensitive to hyperplane, while given a fixed margin. This often

lies on the experiments greatly. Here, we proposes to compute the mean distance of positive

and negative training data to the hyperplane respectively and then collect training data of

which distance to the hyperplane is less than the corresponding mean distance as support

vectors.

That is, if the distance of one data to hyperplane is less than the value of all data

samples‘ distance mean, it should be collected as a support vector and added to the training

dataset to update the SVM classifiers which need to be adjusted. The value of all data

samples‘ distance mean can be calculated by summing up the amount of the positive data

samples and negative ones. The reason behind our method is that the data samples‘ distance

mean could reflect the statistical meaning of samples‘ distribution compared with these

traditional methods.

The feedback is necessary if the results are not satisfying at the first learning process,

because that the distribution status will change the position of the final hyperplane.

Therefore, we adopt feedback to overcome the potential influence by adjusting our multiple

SVM classifiers. Generally, we can judge whether there need feedback or not by given a

according to field knowledge by experts. If the updated value of every SVM is less than

this given , the feedback is considered. But there is a simpler and more convenient way,

which is to compare the difference of the current feedback and the previous one. If the

difference set of these two feedbacks is empty or fixed or less than a given number e , the

feedback is not needed any more.

The experiment results and the analysis are given based on this arithmetic in Ref. [16],

which proves the efficiency of the delta training method.

4. Learning Framework based on Multi-agents Framework. Data stream is a kind of

large-scale database and its distinct characteristic is that the data streams vary with the time.

The typical data streams may be obtained in stock trade, credit card consumption, weather

information, and so on. So, how to generalize the incremental SVM learning methods to

data streams, a special kind of database, is one challenging task.

Distributed mining framework is constructed according to the idea of "Divide and

Conquer". Supposed that at every time point T, the data on every distributed node are fixed.

They will be updated till next time point T+1. The easiest way is training data on every

node at time point T. As the time passed, there will be serials of learning results data on

every node. Then by some rules or fusion expert knowledge, some local learning results

data will be selected as the global ones.

If the distribution of data on every node is balanced, or the same, or not varied with time

T and T+1, the above method is always right. But this is a hypothetical instance. That is to

say, the features of collaboration between agents are used to make the distribution of data

34

balanced. Thus, the local learning results data could be the global ones.

The structure of the proposed incremental SVM learning framework based on

Multi-agent system is shown in figure 3. There are 4 main kinds of agent in the structure.

Each agent has its own function.

FIGURE 3. Structure of Multi-agent system framework.

(1) Data windows agent

The main function of data window agent is to separate the data at time point T into some

smaller ones. The width of data window is the max value n that local outlier data mining

algorithm can deal at time point T. Different local SVM learning algorithm has different

capability on n data between T and T+1. If different local SVM learning algorithms are

assigned to distributed nodes, the data window agents will be different.

(2) Data balanced agent

Data balanced agent will check the distribution status on each node at time point T and

compare them with that of time point T+1 according the density of data. If the difference is

under the threshold value pre-given, the data cannot be updated and the local SVM learning

algorithm will not be executed at the time point T+1. If the difference of density of data at

the T and T+1 is obvious, the data on this node will be updated and the local SVM learning

algorithm will be executed again to find the support vector data at T+1.

(3) Local learning agent

The function of local learning agent is to execute the local SVM learning algorithm

according the message from the data balanced agent, and record the local learning results

data at different time point T.

(4) Global fusion agent

When all data are done, the global fusion agent will select appropriate learning results

data as the global ones. Of course, this is a decision-making process.

35

5. Application Experiment. With the development of society and the need of

modernization, the City Operation System has accumulated lots of useful data, and it has

become a focal point in this field that how to find knowledge and make a strategic decision.

Compared with available mass monitoring data, the potential symptoms of accidents are

―small samples‖ information models. How to find these symptoms in the mass monitoring

data of the City Operation System is crucial and important to prevent the accidents

happening. To validate feasibility of proposed learning model, here combining the method

of outlier data mining with SVM, it is applied to mine potential symptoms in unforeseen

accidents of the City Operation System.

There are mass monitoring data in the City Operation System, which are collected from

different departments and fields of the city, such as traffic, weather, all kinds of water,

electricity, windpipe line, and etc. The relations between these data are complicated; the

change of some data may have direct or indirect influence on the other data. Among the

mass and complicated data, the data which have great influence on the normal running of

the City Operation System should be given due attention. However, the change of some

data are not obvious, but the data still have some impact to the city system's normal running,

that are the outlier data of the City Operation System. The traditional data forecast methods

can describe and analyze the change trend of all kinds of data easily, but it can't give a

quantitative express of the degree of the relation between the data. Therefore, the outlier

mining of the City Operation System is obviously important.

The format of data used to simulation analyze in this application are listed in Table.1.

The more data are not listed for some reasons. All the data to be analyzed should be

combined into one table, according the monitor date.

TABLE 1. Some data of water monitoring

date

Water, electric, gas

Water

supply

Plan

amount

of water

Electric

supply

Plan

amount

of electric

Gas

supply

Plan

amount

of gas

20111109 390 383 1785.9 1900 1193.4 1100

20111110 399 337 1832.3 1850 1232.7 1400

20111111 386 358 1799.8 1900 1366.9 1500

20111112 370 353 1815.4 1900 1284.1 1500

…… …… …… …… …… …… ……

We conducted experiment using these data, which is pre-labeled by hand and consists of

5879 data points, each having a dimension of 57 to compare the batch incremental SVM

learning algorithm and crossed iteration incremental SVM learning algorithm we proposed.

The experiment is prepared as following: take 477 data points as initial training set and the

other data points as test set randomly, separate the rest data points into 5 subsets and use the

polynomial kernel.

The application process proposed in this paper is as follows: first, some necessary

36

parameters are set in the user interface program. The data window agents are assigned to

each distributed node to prepare the mining data when the time point T starts, and local

learning agents are working. When it finished, all local learning data on each node will be

record. Then the T+1 comes, the data balanced agents do their work that is to compare the

data distribution status at the two time points. If there are no differences in distribution, or

within the threshold value, the data streams at time point T+1 are discarded immediately

and the data windows agents are ready to deal the next data set at T+2. Else, the learning

results data, those are support vectors, obtained at T will be added to the data set at T+1,

and then the local learning agents do their work at the T+1. Repeat this process until the

last time point T or all data streams are done, there is a set of outlier data on each

distributed node of mining framework.

At last, global fusion agents have their function. And the learning results are given in

form of rules, and more clearer and understandable interpretations are given with visual

graphic display.

Table 2 shows the classification precision comparisons for this experiment.

TABLE 2. Classification precision comparisons

Data

number

Agent

number

Precision of

Batch

algorithm

Precision of

proposed

algorithm

583 5 89.6% 87.8%

899 10 90.3% 91.7%

1275 15 91.5% 93.0%

2598 20 92.3% 93.8%

3676 20 92.8% 92.8%

4469 25 90.7% 92.1%

5366 25 88.3% 90.9%

5879 30 86.8% 90.7%

It can be seen that the classification precision results in incremental steps are improved.

The whole classification process does not decrease the time-cost of computing SVM, but

the classification precision is improved. Another interesting thing is when agent number

increased in some decent, the precision results may be decrease. Support the data is

standard distribution, why the precisions decrease? We think that with the agent increase,

the time-cost of algorithm must decrease. How one agent gets relationship to the other ones?

How the support vectors change with the number of agent and data increase? These are the

next research points, but it is clear, the algorithm improves the classification precision

compared to the Batch learning algorithm.

5. Conclusions. In this paper, an incremental SVM learning algorithm on data stream is

introduced, which is based on the cascade structure. The problem can be decomposed into

some smaller-sized training datasets and the corresponding multiple SVM classifiers

37

trained in parallel computer system or distributed structure system with necessary

feedbacks. The operations on feedback are the important improvements of the batch

learning model.

Multi-agent system has the features of autonomy, distributed collaboration and

intelligence. These meets the needs of distributed mining framework construction to

learning on data stream. Therefore, the Multi-agent system and the incremental SVM

learning model are combined in this paper, proposed an incremental SVM learning

framework for data streams. The proposed framework has been applied to analyze the

symptoms in the mass monitoring data of the City Operation System practically.

Acknowledgment. This work is partially supported by ―the Fundamental Research Funds

for the Central Universities‖. The authors also gratefully acknowledge the helpful

comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] V. Vapnik, Statistical Learning Theory, Wiley, 1998.

[2] T. Joachims, Making Large-scale Support Vector Machine Learning Practical, Advances in Kernel

Methods, Cambridge, MIT Press, 1999.

[3] R. Collobert, Y. Bengio, S. Bengio, A Parallel Mixture of SVMs for Very Large Scale Problems, Neural

Information Processing Systems, Vol.17, MIT Press, 2004.

[4] A. Tveit, H. Engum, Parallelization of the Incremental Proximal Support Vector Machine Classifier

using a Heap-based Tree Topology, Tech. Report, IDI, NTNU, Trondheim, 2003.

[5] J. X. Dong, A. Krzyzak, C.Y. Suen, A fast parallel optimization for training support vector machine,

Proc. of 3rd International Conference on Machine Learning and Data Mining, Leipzig, Germany, LNAI

2374, pp.96-105, 2003.

[6] G. zanghirati, L. Zanni, A parallel solver for large quadratic programs in training support vector

machine, Parallel computing, Vol.29, 2003.

[7] Y. G. Peng, Z. C. Lu; J. S. Yu. Multi-agent framework for engergy supply/demand prediction. Proc. of

2009 World Congress on Computer Science and Information Engineering, 2009, pp.586-590.

[8] Danil Prokhorov. Multi-agent framework for remote diagnostics. Proc. of 2010 IEEE Congress on

Evolutionary Computation, 2010.

[9] N. Syed, H. Liu, and K. Sung, Incremental learning with support vector machines, Proc. of IJCAI

Conference, Sweden, 1999.

[10] P. Mitra, C. A. Murthy, and S. K. Pal, Data condensation in large databases by incremental learning with

support vector machines, Proc. of ICPR Conference, Spain, 2000.

[11] A. Tveit, M. L. Hetland, H. Engun, Incremental and decremental proximal support vector classification

using decay coefficients, Proc. of the 5th International Conference on Data Warehousing and

Knowledge Discovery. Lecture Notes in Artificial Intelligence, Spring-Verlag, 2003.

[12] R. Klinkenberg, T. Joachims, Detecting concept drift with support vector machines, Proc. of the 17th

International Conference on Machine Learning, Morgan Kaufmann, 2000.

[13] K. Crammer., Y. Singer., On the learnability and design of output codes for multiclass problems,

38

Computational Learning Theory, pp.35-46, 2000.

[14] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning,

Advances in Neural Information Processing Systems, 2000.

[15] J. C. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in

Kernel Methods, Cambridge, MIT Press, 1998.

[16] J. P. Zhang, Z. W. Li, J. Yang. A parallel SVM training algorithm on large-scale classification problems.

Proc. of 2005 International Conference on Machine Learning and Cybernetics, 2005, pp.1637-1641.

[17] Y. M. Wen and B. L. Lu, A cascade method for reducing training time and the number of support

vectors, Proc. of International Symposium on Neural Network, Dalian, 2004.

